
MATH 245 S24, Exam 2 Solutions

1. Carefully define the following terms: well-ordered (for sets), recurrence.
A set of numbers S is well-ordered if there is some ordering < and S is well-ordered by <. A sequence
is a recurrence if all but finitely many terms of that sequence are defined in terms of its previous
terms.

2. Carefully state the following theorems: Nonconstructive Existence Theorem, (Vanilla) Induction The-
orem.
The Nonconstructive Existence Theorem says: To prove ∃x ∈ D,P (x) is true, you can instead prove
∀x ∈ D,¬P (x) ≡ F . The (Vanilla) Induction Theorem says: To prove ∀n ∈ N, P (n), you can instead
prove: (a) P (1); and (b) ∀n ∈ N, P (n)→ P (n + 1).

3. Let an = 7n2 + 3. Prove that an = Θ(n2).

This must be done in two parts, i.e. an = O(n2) and an = Ω(n2).

an = Ω(n2): Choose n0 = 1 and M = 1. Let n ∈ N with n ≥ n0 be arbitrary. Now M |an| = 7n2+3 ≥
7n2 ≥ n2 = |n2|. hence M |an| ≥ |n2|.
an = O(n2): Choose n0 = 2 and M = 8. Let n ∈ N with n ≥ n0 be arbitrary. Now n2 ≥ 22 = 4 ≥ 3.
Hence 7n2 + 3 ≤ 7n2 + n2, so |an| = |7n2 + 3| = 7n2 + 3 ≤ 8n2 = M |n2|. Hence |an| ≤M |n2|.
ALTERNATE an = O(n2): Choose n0 = 1 and M = 10. Let n ∈ N with n ≥ n0 be arbitrary. Now
(M − 7)n2 = 3n2 ≥ 3. Hence 7n2 + 3 ≤Mn2, so |an| = |7n2 + 3| = 7n2 + 3 ≤Mn2 = M |n2|. Hence
|an| ≤M |n2|.

4. Prove or disprove: For all x ∈ R, dxe ≤ bxc+ 1.

The statement is true. Let x ∈ R be arbitrary. Part of the definition of floor is x < bxc + 1,
and part of the definition of ceiling is dxe − 1 < x. Combining and adding 1 to both sides gives
dxe < bxc + 2. We now apply Thm 1.12 (since both sides of the inequality are integers), to get
dxe ≤ (bxc+ 2)− 1 = bxc+ 1.

5. Prove or disprove: For all n ∈ Z, the number n(n−1)(n−2)(n−4)
5 is an integer.

The statement is false, so we need to find a counterexample. There are plenty to choose from: 3, 8,
13, -2, -7, etc. However, we need to pick one, so let’s pick n = 3. We calculate n(n−1)(n−2)(n−4)

5 =
3(3−1)(3−2)(3−4)

5 = 3·2·1·(−1)
5 = −6

5 , which is not an integer.

6. Suppose that an algorithm has runtime specified by recurrence relation Tn = 3Tn/2 + n2. Determine
what, if anything, the Master Theorem tells us.

We have a = 3, b = 2, cn = n2, and k = 2 because cn = n2 = Θ(n2). The Master Theorem applies,
since a ∈ N, and b is a constant greater than 1 (need to verify/state this). We now calculate
d = logb a = log2 3. We know that 1 = log2 2 < log2 3 < log2 4 = 2, so 1 < d < 2 = k. Hence this is
the “large cn” case, and the Master Theorem tells us that Tn = Θ(nk) = Θ(n2).

7. Let n ∈ Z. Prove that the following are equivalent: (a) n is even; (b) 7n is even; (c) n + 1 is odd.
This requires at least three parts, which must be clearly labeled. Here is one way:

(a)→(b): Suppose that n is even. Then there is some m ∈ Z with n = 2m. We have 7n = 7(2m) =
2(7m). Since 7m ∈ Z, 7n is even.

(c)→(a): Suppose that n + 1 is odd. Then there is some m ∈ Z with n + 1 = 2m + 1. Subtracting 1
we get n = 2m, and m ∈ Z, so n is even.

(b)→(c): Suppose that 7n is even. Then there is some m ∈ Z with 7n = 2m. Now 7|2m, 7
is prime, and 7 - 2. Hence 7|m. So there is some k ∈ Z with m = 7k. Plugging in, we get



7n = 2m = 2(7k) = 7(2k). Dividing by 2 we get n = 2k. Adding 1 we get n + 1 = 2k + 1. Since
k ∈ Z, n + 1 is odd.

ALTERNATE (b)→(c), from a student solution: Suppose that 7n is even. Then there is some m ∈ Z
with 7n = 2m. Now 2|7n, 2 is prime, and 2 - 7. Hence 2|n. So there is some k ∈ Z with n = 2k.
Adding 1 we get n + 1 = 2k + 1, so n + 1 is odd.

ALTERNATE (b)→(c), from a student solution: Suppose that 7n is even. Then there is some m ∈ Z
with 7n = 2m. Add −6n + 1 to both sides, getting n + 1 = 2m − 6n + 1 = 2(m − 3n) + 1. Since
m− 3n ∈ Z, n + 1 is odd.

For problems 8-10, we fix unknown positive real numbers r, s, t, u, and consider the recurrence given
by x1 = r, x2 = s, and xn = txn−1 + uxn−2 (for n ≥ 3).

8. Prove that if {an} satisfies the recurrence then an ≤ (2M)n (for all n ∈ N), where M =
max(r, s, t, u, 1).

We use strong induction. Two base cases: a1 = r ≤ M ≤ 2M = (2M)1, and a2 = s ≤ M ≤ 2M ≤
(2M)2 (since 2M ≥ 1). Now let n ∈ N with n ≥ 3, and assume that an−1 ≤ (2M)n−1 and an−2 ≤
(2M)n−2. We now have an = tan−1 + uan−2 ≤ t(2M)n−1 + u(2M)n−2 ≤ t(2M)n−1 + u(2M)n−1 ≤
M(2M)n−1 + M(2M)n−1 = (2M)(2M)n−1 = (2M)n. Hence an ≤ (2M)n.

9. Prove that there exists at least one sequence {an} satisfying this recurrence (with indices in N, i.e.
n ∈ N). NOTE: Just prove it exists, do not try to find a closed form.

This problem seems to have filled many of you with existential dread. It’s proving one of the basic
facts that we use in chapter 7.1, that recurrences (of this type) must have solutions. Not every
recurrence does! For example, consider: x1 = −3, xn = 1

3+xn−1
(n ≥ 2). This one grinds to a halt

immediately, there is no way to even get a second term much less infinitely many afterward.

Using the techniques of Chapter 7.1 is not the pathway to success here. At best, you would get a
candidate sequence an = Arn1 + Brn2 or perhaps an = Arn1 + Bnrn2 . But that’s only a candidate, you
have not proved that it satisfies the recurrence! You would need to prove a1 = r, and a2 = s, and
a2 = tan−1 + uan−2 (for all n ≥ 3), which is awkward to do since you don’t know A,B, r1, or r2
explicitly. That is why the problem told you not to try to find a closed form.

SOLUTION: We prove {an} exists by strong induction. Two base cases, take a1 = r and a2 = s,
which satisfies the recurrence’s initial conditions. Now, let n ∈ N with n ≥ 3. We assume that an−1
and an−2 have been chosen already, so they must exist (and satisfy the recurrence). We now choose
an = tan−1 + uan−2, which exists and also satisfies the recurrence.

10. Prove that there exists at most one sequence {an} satisfying this recurrence (with indices in N, i.e.
n ∈ N). HINT: minimum element induction on a set of indices.

Suppose {an} and {a′n} are two sequences, that each satisfy the recurrence. We now define set
S = {m : am 6= a′m}, the set of indices where the two sequences are not equal. Note that S has
a lower bound of 3, since a1 = a′1 = r and a2 = a′2 = s. If S is empty, then we are done and
happy (the two sequences are equal). If instead S is not empty, then by minimal element induction
S has a minimal element n ≥ 3. Hence an 6= a′n, but an−1 = a′n−1 and an−2 = a′n−2. But now
an = tan−1 + uan−2 = ta′n−1 + ua′n−2 = a′n. This is impossible, we cannot have both an 6= a′n and
an = a′n. Hence S must be empty, and {an} = {a′n}.


